Exercise 66

The figure shows a fixed circle C_{1} with equation $(x-1)^{2}+y^{2}=1$ and a shrinking circle C_{2} with radius r and center the origin. P is the point $(0, r), Q$ is the upper point of intersection of the two circles, and R is the point of intersection of the line $P Q$ and the x-axis. What happens to R as C_{2} shrinks, that is, as $r \rightarrow 0^{+}$?

Solution

The aim is to find the equation for the line $P Q$ because once it's known, the x-intercept will be R. One point on this line that's known is $P:(0, r)$. The other point Q is unknown, but it can be found by solving the two equations for the circles simultaneously since Q is a point of intersection.

$$
\left.\begin{array}{rl}
x^{2}+y^{2} & =r^{2} \\
(x-1)^{2}+y^{2} & =1
\end{array}\right\}
$$

Subtract the two equations to eliminate y^{2}. Then solve for x.

$$
\begin{gathered}
x^{2}-(x-1)^{2}=r^{2}-1 \\
x^{2}-\left(x^{2}-2 x+1\right)=r^{2}-1 \\
2 x-1=r^{2}-1 \\
2 x=r^{2} \\
x=\frac{r^{2}}{2}
\end{gathered}
$$

Substitute this result back into either of the two equations to get the corresponding y-value.

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
\left(\frac{r^{2}}{2}\right)^{2}+y^{2}=r^{2}
\end{gathered}
$$

Solve for y.

$$
\begin{gathered}
\frac{r^{4}}{4}+y^{2}=r^{2} \\
y^{2}=r^{2}-\frac{r^{4}}{4} \\
y^{2}=\frac{r^{2}}{4}\left(4-r^{2}\right) \\
y= \pm \frac{r}{2} \sqrt{4-r^{2}}
\end{gathered}
$$

The positive value of y is taken since Q is the intersection above the x-axis. As a result, the point for Q is

$$
\left(\frac{r^{2}}{2}, \frac{r}{2} \sqrt{4-r^{2}}\right) .
$$

Determine the slope of line $P Q$.

$$
m=\frac{\frac{r}{2} \sqrt{4-r^{2}}-r}{\frac{r^{2}}{2}-0}=\frac{\sqrt{4-r^{2}}-2}{r}
$$

Use the point-slope formula with point P to get the equation of the line.

$$
\begin{gathered}
y-r=\frac{\sqrt{4-r^{2}}-2}{r}(x-0) \\
y-r=\left(\frac{\sqrt{4-r^{2}}-2}{r}\right) x
\end{gathered}
$$

The x-intercept of this line is $(R, 0)$.

$$
0-r=\left(\frac{\sqrt{4-r^{2}}-2}{r}\right) R
$$

Solve for R.

$$
R=\frac{r^{2}}{2-\sqrt{4-r^{2}}}
$$

Finally, take the limit of R as $r \rightarrow 0^{+}$.

$$
\begin{aligned}
\lim _{r \rightarrow 0^{+}} R & =\lim _{r \rightarrow 0^{+}} \frac{r^{2}}{2-\sqrt{4-r^{2}}} \\
& =\lim _{r \rightarrow 0^{+}} \frac{r^{2}}{2-\sqrt{4-r^{2}}} \times \frac{2+\sqrt{4-r^{2}}}{2+\sqrt{4-r^{2}}} \\
& =\lim _{r \rightarrow 0^{+}} \frac{r^{2}\left(2+\sqrt{4-r^{2}}\right)}{\left(2-\sqrt{4-r^{2}}\right)\left(2+\sqrt{4-r^{2}}\right)} \\
& =\lim _{r \rightarrow 0^{+}} \frac{r^{2}\left(2+\sqrt{4-r^{2}}\right)}{4-\left(4-r^{2}\right)} \\
& =\lim _{r \rightarrow 0^{+}} \frac{r^{2}\left(2+\sqrt{4-r^{2}}\right)}{r^{2}} \\
& =\lim _{r \rightarrow 0^{+}}\left(2+\sqrt{4-r^{2}}\right) \\
& =2+\sqrt{4-0^{2}} \\
& =4
\end{aligned}
$$

